<experimental/simd> 初体验
· 3 min read
之前用非标准的 simd 写过矩阵乘法加速,近期注意到 C++ 新的 Technical specifications——Parallelism library extensions v2 加入了 <experimental/simd>
。于是我尝试用它重写了一下。
#include <iostream>
#include <string>
#include <functional>
#include <chrono>
#include <vector>
#include <cstring>
using namespace std;
double timeit(std::function<void()> test) {
auto start = std::chrono::system_clock::now();
test();
auto stop = std::chrono::system_clock::now();
std::chrono::duration<double, std::milli> time = stop - start;
return time.count();
}
#include <experimental/simd>
namespace stdx = std::experimental;
struct vec {
constexpr static int N = 256;
stdx::fixed_size_simd<double, 4> a[N];
double& operator[](int x) {
return ((double*) a)[x];
}
const double& operator[](int x) const {
return ((double*) a)[x];
}
double dot(const vec& x) const {
stdx::fixed_size_simd<double, 4> sum = 0;
for (int i = 0; i < N; i++)
sum += a[i] * x.a[i];
return stdx::reduce(sum);
}
};
class matrix {
constexpr static size_t m = 1024, n = 1024;
vector<double> e;
public:
explicit matrix(): e(m * n) {}
void random() {
for (size_t i = 0; i < m; ++i)
for (size_t j = 0; j < n; ++j)
at(i, j) = rand();
}
matrix(matrix const& that) = default;
matrix(matrix&&) = default;
matrix& operator=(matrix const& that) = default;
matrix& operator=(matrix&& that) = default;
double& at(size_t i, size_t j) { return e[i * m + j]; }
double const& at(size_t i, size_t j) const { return e[i * m + j]; }
matrix mul_plain(matrix const& that) const {
size_t p = that.m;
matrix product;
for (size_t i = 0; i < m; ++i)
for (size_t j = 0; j < n; ++j) {
for (size_t k = 0; k < p; ++k)
product.at(i, j) += at(i, k) * that.at(k, j);
}
return product;
}
matrix mul_simd(matrix const& that) const {
vector<vec> lines(m), columns(n);
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
lines[i][j] = at(i, j);
columns[j][i] = that.at(i, j);
}
}
matrix r;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
r.at(i, j) = lines[i].dot(columns[j]);
}
}
return r;
}
};
double timeit(matrix (matrix::* test)(matrix const&) const, int times, const char* impl, double base = 0) {
double time = timeit([=] {
srand(1);
for (int i = 0; i < times; ++i) {
matrix m1, m2;
m1.random(); m2.random();
(m1.*test)(m2);
}
});
printf("'%5s' took %.2f ms to complete %d times 1024 x 1024 matrices multiplication", impl, time, times);
if (base && base != time) {
printf(", %.2f%% ", abs(base - time) / base * 100);
if (base > time) printf("faster");
else printf("slower");
}
puts("");
return time;
}
int main() {
double base = timeit(&matrix::mul_plain, 1, "plain");
timeit(&matrix::mul_simd, 1, "simd", base);
}
输出:
'plain' took 5458.48 ms to complete 1 times 1024 x 1024 matrices multiplication
' simd' took 232.27 ms to complete 1 times 1024 x 1024 matrices multiplication, 95.74% faster